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Abstract

New research provides an integration of categorical and continuous latent variable
models. Given its generality, it is fitting to describe the emerging methodology as second-
generation SEM, where the focus is on the generality of latent variable modeling (LVM).
This LVM development promises to be extremely beneficial to growth modeling. The aim
of this paper is to briefly introduce new LVM analyses in the form of General Growth
Mixture Modeling (GGMM) and to show examples of the new analysis opportunities
for growth modeling that are opened up. Five different GGMM examples are given
representing five new types of growth analyses. The analyses are carried out by the new
computer program Mplus (Muthén & Muthén, 1998a). The presentation is non-technical

in order to reach applied researchers.
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1 Introduction

This paper focuses on the interplay between growth curve modeling and structural equa-
tion modeling. Growth curve modeling is concerned with the study of individual differ-
ences in development over time, typically captured by random coefficients, i.e. growth
parameters that vary across individuals. Structural equation modeling is concerned with
relationships among observed and latent variables. The two areas connect due to the fact
that random coefficients may be viewed as continuous latent variables (see, e.g. Mered-
ith & Tisak, 1990). Growth modeling in a latent variable structural equation modeling
(SEM) framework thereby benefits from the full generality of a such a framework. For
example, in the SEM framework it is convenient to study regressions among the random
coefficients, to do growth analysis in multiple populations, to analyze growth in latent
variable constructs measured by multiple indicators, to analyze both parallel and se-
quential growth processes simultaneously, and to include other model parts that relate
to the growth model such as mediators and distal outcomes. For an overview of some

examples of this kind, see Muthén and Curran (1997).

The realization that growth curve modeling is possible using a latent variable con-
ceptualization has enriched SEM research in recent years. New modeling epansions have
otherwise been limited and methodological research has largely been concerned with
refinements of estimators, standard errors, and tests of model fit. Growth modeling has
enriched SEM, but by its general modeling framework SEM has also enriched growth

modeling.




Latent variable structural equation modeling (SEM) is now about to take a radi-
cal leap forward in terms of modeling capabilities. As this paper describes, conventional
SEM models using continuous latent variables are for the first time integrated with mod-
els using categorical latent variables. While categorical latent variable modeling has long
traditions in the form of latent class analysis (LCA), latent profile analysis (LPA), and
latent transition analysis (LTA), these traditions have been completely separated from
SEM. Categorical latent variable modeling also encompasses finite mixture modeling in
general and goes well beyond LCA, LPA, or LTA. New research provides an integration
of categorical and continuous latent variable models. Given its generality, it is fitting
to describe the emerging methodology as second-generation SEM, where the focus is on
the generality of latent variable modeling (LVM). This LVM development promises to
be extremely beneficial to growth modeling. The aim of this paper is to briefly intro-
duce new LVM analyses in the form of General Growth Mixture Modeling (GGMM)
and to show examples of the new analysis opportunities for growth modeling that are
opened up. Five different GGMM examples will be given representing five new types of
growth analyses. The presentation will be as non-technical as possible to reach applied
researchers. The analyses of the five examples were carried out by the new computer
program Mplus (Muthén & Muthén, 1998a). Input specifications are available from the

author.



2 Conventional Latent Growth Modeling

Conventional growth modeling with random coefficients is a useful starting point for
introducing the new modeling ideas. The basic ideas, scope, and limitations of conven-

tional growth modeling are discussed here.

Figure 1 shows three ways of representing growth modeling: using a graph of individ-
ual trajectories; using a two-level model; and using a latent variable model. The top left
panel of Figure 1 shows trajectories given by a linear growth model with hypothetical,
but commonly seen parameter values. Individual lines are given for four individuals.
The mean trajectory is also given as a solid line. It is seen that there is variation in the
initial status at ¢ = 0 as well as variation in the growth rate. Individuals starting higher

grow faster.

The top right panel of Figure 1 translates the individual differences idea into a ran-
dom coefficient model expressed as a multilevel model. The level-1 equation describes
variation across time. Here, 79 and 7, represent intercept and slope coefficients in the
regression of y on time ¢. The individual differences are captured by letting the intercept
and slope vary across individuals, so that the 7 coeficients have subscript ¢. While this
allows for across-individual heterogeneity, all individuals are assumed to come from one
and the same population so that the analysis benefits from estimating all individuals
together. The two level-2 equations describe variation across individuals for the inter-
cepts and slopes and relates this variation to a background variable z, referred to as

a time-invariant covariate (time-varying covariates can be included in the level-1 equa-




tion). The fact that the individuals come from a single population is reflected by the
absence of a subscript 4 for the level-2 parameters of a and 7. Further single population
parameters appear in the covariance matrix for the residuals ¢ and for the residuals .
Inserting the intercept and slope of the level-2 equations into the level-1 equation gives

the model in a form referred to as the mixed linear model.

The bottom panel of Figure 1 translates the two-level model into a latent variable
framework where the random coefficients are reconceptualized as latent variables. The
level-1 equation and the level-2 equations correspond to a measurement and a struc-
tural part of a latent variable model, respectively. An advantage of growth modeling
in a latent variable framework is that the framework opens up possibilities for general
structural equation modeling, including regressions among random coefficients, multiple
population analysis with flexible across-group differences in covariance matrix struc-
tures, growth modeling of latent variable constructs with multiple indicators, analysis of
multiple processes, and the inclusion of other models parts such as mediational modeling

and the analysis of distal outcomes.

2.1 A Simple Conventional Growth Model

Consider a simple linear growth model with an outcome y;; for individual ¢ observed at
timepoint ¢,

Yit = Noi + M1 Te + Eit, (1)




where 7g; is the intercept factor, 7y, is the growth rate factor, x; represents a time-related
score such as age, and €; is the time-specific residual assumed to be normally distributed.
A given individual ¢ has the values 7y; and 71; on the two growth factors. The growth

process for this individual develops over time as z; changes as
No: + N1i Tt (2)

This is individual ¢’s trajectory, describing the systematic part of the variation of the
outcome at different timepoints. The individual’s outcome at a certain timepoint £, y;,
is equal to the sum of the systematic part of the variation plus the time-specific residual
€t

As mentioned above, the equation given in (1) is often referred to as the level-1

equation, describing the repeated measures over time. The level-2 equation describes

the variation in the 7, and 7;; factors as a function of covariates T,

Noi = &g + Y _ Bor Zrs + Cois (3)

T = Qq + Zﬂlr Tri + Ci, (4)

where o coefficients are intercept parameters, 8 coefficients are regression weights for the
covariates, and the (’s represent residuals assumed to be bivariate normally distributed

with covariance matrix W.

The parameters of (1), (3), and (4) can be estimated by maximum likelihood. Given
such estimates, individual estimates of the growth factor values 7g; and 7;; can be ob-

tained by the Bayesian approach of maximizing the posterior distribution of the factors




given the individual’s observed data. In statistics this is referred to as Empirical Bayes
estimation, while in psychometrics it is referred to as factor score estimation using the

regression method.

2.2 Model Implications and Limitations

All of the five trajectories shown in Figure 1 follow the random coefficient growth model
of (1), (3), and (4). The bold line is the average trajectory which is evaluated at the
means of the two growth factors n; and 7y;, i.e. these factor means are inserted in
(2). In addition, trajectories are shown for intercept growth factor values of one and
two standard deviations below and above the mean, with corresponding slope factor
values derived from the bivariate normal distribution. The variation across these five

trajectories is due to the individual-specific influence of the covariate x,; and the residuals

Co; and (;.

Some of the trajectories in Figure 1 represent quite different development over time.
For example, if the outcome represents reading skills in grade 1, the two bottom lines
labelled 7 = 3 and ¢ = 4 may correspond to somewhat problematic or very problematic
reading development, whereas the two top lines labelled ¢ = 2 and ¢ = 1 may corre-
spond to good or excellent reading development. An assumption of the conventional
growth model is that the data come from a single-population growth model that en-
compasses all these different types of trajectories, i.e. all individuals belong to one and

the same population. In particular, it is assumed that the x covariates have the same




influence on the growth factors for all trajectories, i.e. the 3 covariate slopes of (3)
and (4) are the same for all individuals. Using the example of the two types of good
reading development versus the two types of poor reading development, this assump-
tion of a homogeneous population may not be realistic. For example, the variation in
reading development among poor readers may have a stronger influence from the school
environment while the variation in reading development for good readers may have a
stronger influence from the home environment, or vice versa. In addition, the variances
for the residuals may differ across these two types of development, violating a second
type of homogeneity assumption in the conventional growth model. The point is that
although the conventional growth model captures individual differences in trajectories,
it is not always realistic to assume that a single-population model can account for all

types of individual differences.

More generally, the two types of development just discussed may have not only dif-
ferent antecedents but also different growth shapes, different concurrent processes, and
different consequences. For example, problematic first-grade reading development may
have a non-linear shape, may co-occur with the development of aggressive classroom
behavior, and may increase the probability of subsequent deficits in achievement devel-
opment or school dropout. This type of developmental heterogeneity is presumably quite
common. In mental health, drug, and alcohol research the recognition of heterogene-
ity has led to theories of multiple developmenta] pathways (see, e.g. Moffitt, 1989 on
adolescent-limited versus life-course-persistent antisocial behavior), subtypes (see, e.g.

Zucker, 1994 and Schulenberg, O’Malley, Bachman, Wadsworth & Johnston, 1996 on




alcoholism and Nagin, Farrington, & Moffitt, 1995 on criminal offenders), and different
disease processes (see, e.g. Pearson, Morrell, Landis, Carter, and Brant, 1994 on prostate
cancer development). The Pearson et al. (1994) study illustrates some key modeling
ideas. It examined the development of prostate specific antigen (PSA) and related this
to later occurrence of tumors and cancers. While the normative development of PSA
over age can be described by a linear growth model with variation in intercept and slope,
development leading to tumors and cancers is characterized by a change from linear to
exponential PSA growth, where the severity of the outcome corresponds to different

forms of the growth curves.

In summary, the conventional growth model allows heterogeneity corresponding to
different growth trajectories across individuals and captures that by variation in the
continuous growth factors. However, the conventional growth model cannot capture
heterogeneity that corresponds to qualitatively different development. While multiple-
group SEM growth modeling is a flexible tool for studying qualitatively different devel-
opment across individuals belonging to known groups, the problem here is that the group
membership is typically not known but need to be inferred from the data. The next
section discusses new methodology which introduces categorical latent variable modeling

to greatly add to the capability of capturing heterogeneity in development.
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3 Second-Generation Structural Equation Modeling

Second-generation structural equation modeling uses a combination of categorical and
continuous latent variables. The ideas can be described with the help of the protétypical
model structure of Figure 2. The figure shows four different modeling frameworks,
labelled A, B, C, and D. These will be discussed in turn with an emphasis on C and D
which provide the new growth modeling opportunities to be studied in the remainder of
this paper. Four examples will be given of framework C analysis and one example will

be given of framework D analysis.

3.1 A: Conventional Latent Variable Growth Modeling

The modeling framework labelled A has observed continuous outcomes or latent vari-
able indicators, latent continuous variables, and observed background variables. This
encompasses conventional SEM as it has been practiced in the last 25 years (see, e.g.
Bollen, 1989). When the observed outcomes represent repeated measures over time, the
latent variables are the growth factors and the background variables are the covariates
as in (1), (3), and (4). Framework A was used in Muthén and Curran (1997) in their
discussion of extensions of conventional growth modeling, particularly for randomized

treatment-control studies.
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3.2 B: Latent Class Modeling

The modeling framework labelled B has categorical latent class indicators, a categorical
latent class variable, and observed background variables. This includes conventional
latent class analysis (see, e.g. Clogg, 1995) as well as more recent extensions that add
covariates (see, Dayton & McReady, 1988; Formann, 1992; van der Heijden, Dessens
& Bockenholt, 1996; Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997). When the
latent class indicators represent repeated measures over time, latent transition analysis
(see, e.g. Collins & Wugalter, 1992) specifies a latent class variable for each timepoint

and analyzes the transition probabilities between classes.

3.3 C: Finite Mixture Modeling

The modeling framework labelled C extends framework A by the categorical latent class
variable. The broken arrow from the latent class variable to model framework A indicates
that the parameters of A can be different for different latent classes. The analogy with
conventional SEM is that the latent classes represent multiple populations or groups, but
in contrast to multiple-group SEM the group membership is unobserved. This analogy
makes it clear that framework C provides very flexible modeling given that multiple-
group SEM allows group differences in any of the parameters. Model C analysis also
produces a counterpart to factor scores for continuous latent variables. Given that the
latent class variable is categorical, the factor score notion is generalized to posterior

probabilities of membership in the different latent classes. A person may be classified

12



into the class that has the highest probability.

3.3.1 Mixture Models for Clustering

In statistical work, the latent classes are viewed as mixture components or missing data.
A key reference for mixture analysis is Titterington, Smith and Makov (1985). Most of
the statistical research using framework C does not include the latent continuous vari-
ables. A typical application is a multivariate model for the outcomes where the mixture
components have the same covariance matrix and different mean vectors. This is a form
of cluster analysis given that posterior probabilities of class membership are produced
(see, e.g. McLachlan & Basford, 1988). An example is the classic 3-component analysis
of the Fisher Iris data (see, e.g. Everitt & Hand, 1981). In psychometrics, related classic
work has considered latent profile analysis (see, e.g. Gibson, 1959; Bartholomew, 1987),

assuming a diagonal covariance matrix for each component.

3.3.2 CACE Modeling

Little énd Yau (1998) give a novel example of a latent class variable viewed as missing
data. rhI‘his draws on Rubin’s causal model, introducing the concept of Complier Average
Causal Effect (CACE) estimation. Here, latent classes corresponding to those who
participate versus do not participate in a randomized treatment program are used to
give an assessment of treatment effects comparing participants in the treatment group

with potential participants in the control group. For those randomized into the treatment
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the latent class membership is observed. For individuals in the control group, however,
category membership is missing, i.e. class membership is a latent categorical variable.

This is a promising new technique that can also be used in growth modeling contexts.

3.3.3 Mixture SEM

Framework C has been considered in an SEM context. For example, Blafield (1980),
Yung (1997), Jedidi, Ramaswamy, DeSarbo and Wedel (1996), and Jedidi, Jagpal and
DeSarbo (1997) studied mixture confirmatory factor analysis and structural equation
modeling. The models studied by these authors, however, are more limited than what
is shown as framework C in Figure 2. This is because the models do not allow for the
regression of the latent class variable on the background variables. This limitation is
shared by most mixture modeling, two recent exceptions being Little and Yau (1998)
and Nagin and Tremblay (1998). Not including the regression of the latent class vari-
able on the background variables has two drawbacks. First, the probabilities of latent
class membership are taken to be the same for individuals with different values on the
background variables which may be unrealistic in many settings. Second, a two-stage es-
timation is necessary when exploring the characteristics of the latent classes. Instead of
a joint maximum-likelihood analysis of the full model for the latent variable indicators,
the latent continuous variables, the latent class variable, and the background variables,
a second-stage analysis is needed where estimated posterior probabilities for the latent

classes are related to the background variables.
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3.3.4 Growth Mixture Modeling

The primary focus for framework C in this paper is growth mixture modeling. Ver-
beke and LeSaffre (1996) discussed a mixed linear model approach to random coefficient
growth modeling with a mixture that allows for different means of the random coef-
ficients. Extending the work of Nagin and Land (1993), Nagin and Tremblay (1998),
Jones, Nagin, and Roeder (1998), and Roeder, Lynch, and Nagin (1998) discuss model-
ing of different trajectory classes with normal and non-normal outcomes. The Nagin et
al. work also recognizes the importance of estimating the effects of class membership on
covariates. However, for each class their modeling considers a fixed-effect growth model,
not a random coefficient growth model. In this paper we will consider a flexible random
coefficient growth mixture model based on framework C and, further on, framework D.
Framework C may be viewed as providing model framework A for each latent class cate-
gory and therefore allows for considerable modeling generality. The discussion based on
framework C will center around four types of growth mixture examples. The discussion
draws on recent work in Muthén, Brown, Khoo, Yang, and Jo (1998) and Muthén and

Shedden (1998).

The first example shows how the growth mixture model provides a solution to the
problem of heterogeneity in covariate influence discussed in the previous section. In
terms of Figure 2, the arrow from the latent class variable can be seen as representing
latent class membership influence on the arrow from the background variables to the

latent continuous variables. This means that different latent classes have different slopes
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in the regression of the latent continuous variables on the background variables.

The second example shows how the growth mixture model provides a solution to
the problem of heterogeneity of growth curve shapes. Here, the arrow from the latent
class variable can be seen as representing latent class membership influence on the means
(intercepts) of the latent continuous growth factors. Different latent classes have different
growth shapes because the growth factor means are different. Different latent classes
may also have different number of growth factors; e.g. one class has linear growth and

one class has quadratic growth.

The third example also concerns an analysis of growth curve shapes. While the
second example is an exploratory analysis, the third example concerns confirmatory
analysis with prespecified growth curve shapes that are of particular interest to the

researcher.

The fourth example shows how the growth mixture model provides a solution to
yet another form of growth shape heterogeneity. Here, the arrow from the latent class
variable can be seen as representing latent class membership influence on the slopes
(loadings) for the outcomes, i.e. the latent variable indicators, on the latent continuous
variables. These slopes capture the time-related scores z; in (1) and reflect the cur-
vature of the trajectory. The particular application in this case is piecewise modeling
where different stages of development are captured by a growth model with different
pieces corresponding to different growth rates. Conventional piecewise modeling has

the weakness of assuming that every sample unit makes the transition from one piece
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to the next at the same, known timepoint. In contrast, mixture modeling allows for

individually-varying transition points between the different stages of development.

3.4 D: General Latent Variable Modeling (LVM)

The modelling framework labelled D is a combination of the other frameworks and will
be referred to as general latent variable modeling, or LVM for short. This may be seen
as secoﬁd—generation structural equation modeling given that the modeling capabilities
are vastly enhanced relative to conventional SEM. Because the generality is gained by
the introduction of both categorical and continuous latent variables, it seem appropriate
to focus on the concept of latent variables and use the term LVM. LVM expands latent
class modeling, finite mixture modeling, and SEM. On the one hand LVM recognizes
the usefulness of expanding the latent class framework. Latent class analysis concerns
a particular mixture model of independence among a set of categorical latent class
indicators. In contrast, LVM lets the latent classes also influence more general mixture
models for the other model parts of framework A. On the other hand LVM recognizes
the usefulness of expanding finite mixture modeling to include direct indicators of the
mixture components. Finite mixture modeling infers mixture component membership
from the distribution of the latenf variable indicators and the background variables. In
contrast, LVM can let the latent class and latent class indicator part of the model be
a specific measurement model from which class membership can be inferred beyond the

information from the observed variables in framework A.
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Model framework D provides the fifth and final example. The fifth example uses the
growth mixture model of the second example where the latent class variable determines
a set of growth shapes. A new type of application is obtained by letting latent trajectory
class membership corresponding to these growth shapes influence the probability of a

later outcome as represented by a single latent class indicator.

Technical aspects of LVM and its estimation by maximum likelihood is described in
Muthén, Shedden, and Spisic (1998) and will not be discussed here. The analyses of
all five examples presented here were carried out by this method as implemented in the
computer program Mplus (Muthén & Muthén, 1998a). Mplus is a new program that
replaces the author’s LISCOMP program. Despite its ability to carry out such general
types of models as indicated by framework D, Mplus has a simpe model specification

language without matrices or equations that is suitable for applied researchers.

3.4.1 General Growth Mixture Modeling

From a growth modeling perspective, the new growth modeling opportunities made avail-
able in LVM may be labelled General Growth Mixture Modeling (GGMM) as was done
in Muthén et al. (1998). In summary, GGMM goes beyond conventional random coef-
ficient growth modeling by using latent trajectory classes which allow for heterogeneity
with respect to the influence of antecedents, growth shapes, concurrent outcomes, and
later consequences. Two additional features of the analysis are particularly noteworthy,

confirmatory analysis and estimation of class membership probabilities.
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Confirmatory analysis is a key element in conventional SEM. A priori hypotheses
can be captured by parameter restrictions. For instance, factor loadings may be fixed
at zero to reflect the belief that a certain factor is not measured by a certain indicator.
GGMM in framework D offers the same kind of confirmatory analysis, but also a second
type of confirmatory analysis which does not concern hypotheses about parameters but

about individuals’ class membership.

Confirmatory analysis with respect to parameters is very useful in growth settings.
For example, there may be quadratic growth for one class, but the growth shape of a
second class is hypothesized to be linear. Here, the quadratic growth factor mean and
variance are fixed to zero for the second class. Or, one class may have the mean of
one of its growth factors constrained to be larger than that of another class. The mix-
ture analysis benefits greatly from these types of confirmatory restrictions. In contrast,
conventional finite mixture analysis is typically exploratory. Finite mixture analysis is
known to sometimes give rise to numerical analysis problems, such as nonconvergence
and multiple maxima of the likelihood. Confirmatory mixture analysis limits the oc-
currence of such problems. Recent experiences show that growth mixture analysis is a
relatively well-behaved form of mixture analysis given the multivariate trend information

in the data, as well as the possibilities for formulating confirmatory hypotheses.

Confirmatory analysis with respect to the class membership of the individuals is a
feature not found in SEM. With a latent class variable, however, a researcher may want
to incorporate the hypothesis that certain individuals are known to represent typical

trajectories corresponding to a certain class. This knowledge may be due to auxiliary
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information or because the individual displays such a typical growth pattern. For ex-
ample, students who are known to have been diagnosed as having reading disability in
second grade may have a characteristic reading skills trajectory in first grade. Individuals
with known class membership are sometimes referred to as training data. As is the case
with using parameter restrictions, the numerical performance of the mixture analysis
benefits greatly from incorporating training data. It may be noted that multiple-group
SEM corresponds to the case of all sample units contributing training data so that the

latent class variable is in effect an observed categorical variable.

GGMM is a promising tool for analysis of randomized trials. A discussion of GGMM
in preventive intervention settings is given in Muthén et al. (1988). Interventions often
show an interaction between treatment and characteristics of the individual. Important
individual characteristics can be captured by developmental trajectory classes. Differ-
ences between classes may refer to baseline characteristics, such as the initial status of
a growth model (Muthén & Curran, 1997), but also growth rate and more generally
growth shape. GGMM analysis allows the effect of treatment to vary across trajectory
class and is therefore able to give a more detailed assessment of treatment effects. It is
also useful to add the notion of partial compliance and use Complier Average Causal
Effect (CACE) estimation based on latent compliance classes. The use of GGMM in
conjunction with CACE gives a flexible analysis framework for randomized trials; for

some initial work see Muthén and Jo (1998).

A final general comment on GGMM concerns the benefit of estimating an individ-

ual’s posterior probabilities of class membership. This is the counterpart to factor scores
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for conventional SEM. Given an estimated model, each individual obtains a posterior
probability estimate for each class computed as a function of the model parameter esti-
mates and the individual’s values on his or her observed variables. The class to which

the individual most likely belongs can therefore be determined.

Estimation of class membership probabilities is of particular interest with longitudi-
nal data. Consider as an example a model for development of reading skills through first
and second grade. A GGMM analysis estimates the parameters for this development.
The class membership probabilities can then be estimated for a new student before the
student reaches the end of second grade using only the subset of the repeated measures
available at that point in time. It is of interest to study with which precision such prob-
abilities can be estimated at different points in time. This allows for a mechanism for
early prediction of problematic development. The analysis approach may be particularly
useful in diagnostic or preventive intervention settings. Not only may individuals be-
longing to different classes benefit differently from a treatment program but the analysis

could possibly also guide in the choice of treatment variation.
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4 GGMM Examples

4.1 Example 1. Analysis of Math Achievement Development:

Differences in Influence of Covariates

Example 1 uses a subset of the data from the Longitudinal Study of American Youth
(LSAY). The analyses concern females in the younger cohort measured at four time-
points, grade 7 - grade 10, beginning in 1987. Math achievement items and background
information from parents on mother’s education and home resources are used. Con-
ventional random coefficient growth analysis of both females and males indicate that
mother’s education and home resources are both predictive of the initial status in grade
7 as well as the growth rate over grades. The residual variances are significant for both

initial status and growth rate.

In example 1, a 2-class growth model is explored for 984 females with complete
data on the variables. First, the analysis is carried out without the two covariates
(unconditional analysis) and next with the two covariates (conditional analysis). Figure
3 shows the general GGMM framework applied to this example. The latent categorical
variable with two classes is represented by the circle labelled c. The intercept factor is
labelled I and the slope factor is labelled S. The analysis is first carried out without
the two covariates mother’s education and home resources (unconditional analysis) and
then including these covariates (conditional analysis). The prediction of latent class

membership from the covariates will be introduced as the last step of the analysis.
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4.1.1 Unconditional Analysis

A baseline model lets the growth factor means for the intercept factor and the slope
factor vary across the two latent classes while all other parameters are held invariant
across the classes. This results in a log likelihood value of —12,692.249 which should
be compared to the conventional single-class growth model with log likelihood value of
—12,729.608 with three fewer parameters (two growth factor mean parameters and one

class probability parameter).

Coﬁparison of models with different number of classes can be accomplished by using
standard information criteria such as AIC and BIC. The measures are based on the
negative of the log likelihood of the model, with an increasing penalty for an increasing
number of parameters. Smaller values indicate better models. The BIC penalty is the

number of parameters 7 multiplied by in n, where n is the sample size (Schwartz, 1978),
BIC = -2 logL +r In n. (5)

The BIC values for the 1- and 2-class models are 25,521.24 and 25, 467.20, respectively.
The BIC criterion favors the 2-class model over the 1-class model in this example. More
than two classes may be suitable for these data, but such models will not be explored

here.

The 2-class baseline model imposes class-invariance of the covariance matrix for the
two growth factors as well as class-invariance of the variances for the residuals of the
outcomes. Letting the variances for the residuals of the outcomes vary across the two
classes gives a log likelihood value of —12,606.93, corresponding to a likelihood-ratio x?
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difference test value with 4 degrees of freedom equal to 170.6. This indicates that the

residual variances need to be different across classes.

Also letting the factor covariance matrix differ across the two classes gives a log
likelihood value of —12, 595.24 and x?(3) = 23.4, indicating a need for these parameters
to also be different across the classes. For this model there are about 43% in class 1,
where compared to class 2, class 1 is characterized by low starters who grow slowly.
For class 1 the outcome residual variances are estimated as 16.30, 16.29, 22.10, and 49.4,
while for class 2 they are estimated as 12.63; 11.26,8.15, and 8.12. The largest difference
is for grade 10, showing a larger degree of time-specific variance for the low-performing
class. For class 1 the intercept variance is 53.76 while for class 2 the intercept variance
is 39.85. For class 1 the slope variance is 1.76, while for class 2 it is 0.17. All of these
variances are significant except the last one mentioned. While the growth rate variation
for class 1 is significant, the insignificant slope variance for class 2 indicates that students
in this well-performing class develop equally fast. In summary, the two classes show quite

different development.

4.1.2 Conditional Analysis

The conditional analysis attempts to capture some of the variation in the growth factors
using the two covariates mother’s education and home resources. In this analysis, the
slope factor variance is fixed at zero for class 2 based on the unconditional analysis (an

analysis letting this variance be free did not show a significant influence of the covariates
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on the growth rate, nor a significant residual variance). For both class 1 and class 2
mother’s education and home resources were significant predictors of the intercept factor,
i.e. the initial status at grade 7. For class 1, home resources but not mother’s education
was a significant predictor of the growth rate. In this way, the 2-class analysis shows
that home resources is an important factor for math achievement growth, but only for
those not developing well. In contrast, the conventional analysis mistakenly concludes
that home resources is important for growth for all individuals. With respect to the
covariates, the conventional single-class analysis results are more in line with the class 1
results than the class 2 results. This indicates that the results for the majority class do
not always determine the outcome of a conventional analysis. The 2-class analysis is of
educational importance in that it carefully delineates the impact of home resources on
math achievement growth, showing that home resources is important only for a subset

of individuals.

As shown in the GGMM framework C in Figure 3, the latent class membership
may also be related to the two covariates. As part of the GGMM analysis, the logit
regression of ¢ on mother’s education and home resources showed that home resources

had a significant influence on the probability of membership in class 1.
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4.2 Example 2. Analysis of Normative and Non-Normative
Development in Heavy Drinking: Exploring Growth Curve

Shapes

Example 2 uses a subset of data from the National Longitudinal survey of Youth (NLSY).
The outcome variable is frequency of heavy drinking (6 or more drinks on one occasion)
during the last 30 days. Covariates are gender, ethnicity, family history of alcohol
problems, early start of regular drinking (age 14 or less), and dropping out of high
school. For this illustration heavy drinking is considered for one of eight NLSY cohorts

covering ages 18, 19, 20, 24, and 25. The sample size is 934.

A quadratic growth model has been found suitable for the development of heavy
drinking over ages 18 to 37 (Muthén & Muthén, 1988b). The growth curve shape at the
average of the three growth factors is given as the bottom solid curve in Figure 4, showing
an increase from 18 to 21 with a subsequent decrease. This normative growth curve shape
has also beeen found for delinquent behavior and illicit drug sampling. One may ask if
there are also other, non-normative, growth curve shapes represented in this population.
For example, some individuals may show an increase from 18 to 21 but no downturn as
illustrated by the solid line. Given that the conventional, single-class, quadratic random
coefficient model allows for individual variation in all three growth factors, the solid line
trajectory shape is actually included as a special case in the conventional model. The
question is if a better fit to the data can be obtained by a 2-class growth model where the

classes differ in their means on the three growth factors. In line with the GGMM model
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framework C, such a 2-class model can be used to estimate the influence of covariates
on the probability of class membership. The model can also be used to estimate each

individual’s most likely trajectory class membership.

GGMM analyses on the NLSY data were performed in Muthén and Shedden (1998).
A 2-class model resulted in two different solutions, where the two solutions shared the
normative curve for the majority, but had different non-normative curves. A 3-class
solution showed all three kinds of curve shapes and was also found to fit the data better
in terms of BIC values. The Muthén and Shedden (1998) 3-class solution is shown in
Figure 5. The normative class probability was estimated as 81.0%, whereas the two

non-normative class probabilities were estimated as 7.1% and 11.9%, respectively.

As part of the GGMM analysis, membership in the three classes is also related to
the set of covariates. Figure 6 shows the estimates of the éorresponding multinomial
logistic regression. Here, High refers to the class in Figure 5 that is high already at age
18, Increase refers to the class that increases over age, and Norm refers to the normative
class. In the column labelled High versus Norm, the coefficients show how the odds
of belonging to the high class compared to the normative class is significantly (bolded
numbefs) increased for individuals who are male and have early onset, and is significantly
decreased for individuals who are black and did not go to college. In the columns labelled
Increase versus Norm, the coefficients show how the odds of belonging to the increasing
class compared to the normative class is significantly increased for individuals who are

male and who dropped out of high school.
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4.3 Example 3. Analysis of Reading Skills Development: Con-

firmatory Analysis of Growth Curve Shapes

Example 3 uses a subset of data from the study Early Assessment of Reading Skills
(EARS). Here, it was of interest to study reading skills development in first grade and
relate this to Kindergarten precursor skills to see if Kindergarten growth trajectory
patterns were predictive of first grade development. In this analysis, four repeated
measures of first-grade word recognition will be related to four repeated measures of

Kindergarten phonemic awareness skills for a subsample of 410 children.

As a first attempt to relate first-grade development to Kindergarten precursors,
Muthén, Khoo, Francis, and Kim Boscardin (1998) considered conventional growth
modeling in a latent variable framework in line with Figure 7. Recognizing that the
first-grade outcome of word recognition and the Kindergarten phonemic awareness are
in different metric, two growth sequential growth models were specified and related to
each other. For each, the intercept factor was defined as the exit level rather than the
starting point. As seen in Figure 7, the intercept factor I, defined for word recognition
at exit from first grade is related to the Kindergarten phonemic awareness exit level I,
and slope S,. Analysis of this model, showed a significant influence of I, on I,, but no
significant influence of S, on I,,. The lack of significant influence of the phonemic aware-

ness slope S, was a surprise and it was decided to make a more thorough investigation

of this using GGGMM.
The GGMM analysis took the conventional growth model in Figure 7 as a starting
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point to define a set of trajectory classes types of particular interest. For the Kinder-
garten process, three different levels of I, were identified, the mean of the I, factor, and
plus and minus one standard deviation away from the mean. For each of these three
Kindergarten exit levels two levels of S, slope values were chosen, plus and minus one
half standard deviation away from the conditional mean of S, given I,. The resulting six
classes are shown in the left panel of Figure 8. In the analysis, the six classes are spec-
ified by fixing the two Kindergarten growth factor means at the values just mentioned.
The childrens’ class memberships are, however, not fixed but estimated in the analysis.
Furthermore, the analysis estimates the means of the two first-grade growth factors for
each of the six classes. This addresses the key aspect of the analysis: what first-grade

trajectories are found for children in different Kindergarten trajectory classes?

A particularly interesting class comparison concerns class 5 and class 6. These classes
have the same Kindergarten exit level but differ in their Kindergarten growth rate. One
may ask which class will perform better in first grade. Class 5 has the advantage of
having been at this exit level longer than class 6, but class 6 shows quicker learning.
The GGMM analysis results given in the right panel of Figure 8 show that class 6
performs considerably better in first grade than class 5. This means that the S, slope
is important for I,,, contrary to the conventional analysis result. A higher Kindergarten
slope is, however, not always advantageous as comparisons between class 3 and class 4
and between class 1 and class 2 show. For these two higher Kindergarten exit levels a
lower S, slope is more advantageous. In this way, the interaction between I »and S, is not

the same at different I, levels. Even if possible, this heterogeneous interaction precludes
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an analysis with a model of interactions among continuous latent growth factors. Also,
the heterogeneous interaction may explain why the conventional analysis found S, to
be an insignificant predictor of I, - at some Kindergarten exit levels a high S, value is
advantageous and some other levels it is not. The GGMM analysis creates a framework

for early prediction of class membership based on Kindergarten performance.

4.4 Example 4. Piecewise Growth Modeling with Individually-

Varying Transition Points

Example 4 concerns heterogeneity in the relationship between the continuous latent
variable indicators and the continuous latent variables, i.e. the measurement relations.
Figure 9 gives such an example. In Figure 9, the class 1 trajectory follows a conventional
piecewise growth model where the first piece shows linear growth up to ¢t = 3, followed
by a second piece of linear growth with a steeper slope. Conventional latent growth
modeling analyzes such data with a model described in the path diagram below, where

the two slope factors have different means and variances.

A weakness of piecewise growth modeling is that the point of transition from one
stage to the next needs to be both known and the same for all individuals in the sample.
GGMM allows more flexible piecewise growth modeling where different unknown classes
of individuals make the transition at different timepoints. Figure 9 shows an example
with two different transition points, at t = 3 and at t = 4. The two classes have the same

number of outcome variables and the same number of growth factors, but the growth
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factor "loadings” are different for the two classes. Simulation studies of the model
given in Figure 9 show that the 2-class model parameters of this extended piecewise
growth model are easily recovered. The model would seem to be of particular interest in
intervention studies where a certain treatment may take effect after different amounts

of time for different classes of individuals.

4.5 - Example 5. Analysis of Normative and Non-Normative
Development in Heavy Drinking: Growth Curve Shapes

as Predictors of Distal Outcomes

Example 5 returns to the Muthén-Shedden NLSY heavy drinking example discussed in
Example 2. Here, the 3-class model is embedded in a larger model shown in Figure 10.
While the heavy drinking concerns behavior from ages 18 to 25, the model will now be
used to predict a binary variable of alcohol dependence at age 30. As in Example 2, the
latent trajectory class variable in Figure 10 is seen to influence the growth curve shape of
heavy drinking development via the growth factor means and the latent trajectory class
variable is predicted by covariates. The additional feature in Figure 10 is the prediction
of alcohol dependence by trajectory class. This is a logistic regression relationship,
although the predictor variable is latent. In Figure 2 terms, alcohol dependence is
an example of a latent class indicator variable and the model an example of model

framework D.
The use of a latent trajectory class variable as a predictor solves a dilemma that
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occurs when trying to use the continuous growth factors as predictors. Consider as an
example the two trajectory classes of Figure 4. Here the growth factor representing
linear growth rate concerns the rate of increase right after age 18. This linear growth
rate factor is not, however, a suitable predictor of later problematic alcohol use outcomes
because both classes have a high positive slope value. Likewise, if there is a third class
which is high already at age 18, a non-positive slope may be predictive of problematic
outcomes. The key issue is that the growth factor values interact in determining the

growth shape and it is the shape that is predictive.

Figure 11 shows the resulting estimates of the relation between trajectory class and
alcohol dependence. While the normative class (¢ = 3) has an estimated probability
of 0.08 of developing alcohol dependence at age 30, the two non-normative classes have
elevated probabilities of 0.36 (c = 2) and 0.24 (¢ = 1), respectively. Given that the
probabilities vary so strongly as a function of the latent trajectory class membership, it
is of great importance to be able to predict the class membership as early as possible

using both covariate information and early information on heavy drinking development.

5 Conclusions

It is clear from the five examples that General Growth Mixture Modeling (GGMM) is an
important new development for the study of change. The new modeling opportunities
will enrich growth modeling and be better able to reflect more complex ideas of develop-

ment based on substantive theories in various fields. GGMM is further strengthened by
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fitting into a general latent variable framework with which it can be combined. In this
way, it is likely that growth modeling and latent variable modeling will both continue

to benefit from developments in the other area.
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Figure 1.

Three representations of individual differences in growth.
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Figure 2.

A general framework for latent variable modeling.
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Figure 3.

Math achievement modeling.
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Figure 4.

Modeling of heavy drinking.




/

Example: NLSY Heavy Drinking
Two Latent Trajectory Classes

Frequency of
Heavy Drinking

\




Figure 5.

Estimated heavy drinking model: curves.
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Figure 6.

Estimated heavy drinking model: covariates.



Predicting Trajectory Class Membership

Estimated Logit Coefficients:

Covariate (x) High vs Norm Increase vs Norm
Male 1.25 1.48

Black -1.60 -.67
Hispanic -.22 74

Early Onset 1.07 .62
FH123 .62 .68
Dropout 22 80
College -.61 -.04




Figure 7.

Reading skills development: conventional model.
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Figure 8.

Reading skills development: mixture model.
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Figure 9.

Piecewise growth modeling with individually-varying transition points.




Piecewise Growth Modeling:
Individually-Varying Transition Points
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Class 1
slopel: 0,1,2,3,3,3,3
slope2: 0,0,0,0,1,2,3

Class 2
slopel: 0,1,2,3,4,4,4
slope2: 0,0,0,0,0,1,2




Figure 10.

Modeling of heavy drinking: predicting a distal outcome.
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Figure 11.

Modeling of heavy drinking: prediction results.
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